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Abstract— For significant memory concern (SMC) and
mild cognitive impairment (MCI), their classification perfor-
mance is limited by confounding features, diverse imag-
ing protocols, and limited sample size. To address the
above limitations, we introduce a dual-modality fused
brain connectivity network combining resting-state func-
tional magnetic resonance imaging (fMRI) and diffusion
tensor imaging (DTI), and propose three mechanisms in
the current graph convolutional network (GCN) to improve
classifier performance. First, we introduce a DTI-strength
penalty term for constructing functional connectivity net-
works. Stronger structural connectivity and bigger struc-
tural strength diversity between groups provide a higher
opportunity for retaining connectivity information. Second,
a multi-center attention graph with each node representing
a subject is proposed to consider the influence of data
source, gender, acquisition equipment, and disease status
of those training samples in GCN. The attention mechanism
captures their different impacts on edge weights. Third,
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we propose a multi-channel mechanism to improve filter
performance, assigning different filters to features based
on feature statistics. Applying those nodes with low-quality
features to perform convolution would also deteriorate fil-
ter performance. Therefore, we further propose a pooling
mechanism, which introduces the disease status informa-
tion of those training samples to evaluate the quality of
nodes. Finally, we obtain the final classification results by
inputting the multi-center attention graph into the multi-
channel pooling GCN. The proposed method is tested on
three datasets (i.e., an ADNI 2 dataset, an ADNI 3 dataset,
and an in-house dataset). Experimental results indicate that
the proposed method is effective and superior to other
related algorithms, with a mean classification accuracy
of 93.05% in our binary classification tasks. Our code is
available at: https://github.com/Xuegang-S.

Index Terms— Multi-center, multi-channel pooling, graph
convolutional network, early Alzheimer’s disease, dual-
modality fusion.

I. INTRODUCTION

ALZHEIMER’S disease (AD) is a severe neurodegenera-
tive disease, which is the most common type of dementia.

In the United States, 5.8 million Americans lived with AD
in 2020, estimated to reach 14 million by 2060 [1]. That
makes AD the 5th leading cause of death in the United States
for those adults aged 65 years or older [2]. Although the
disease is incurable for now, it can be delayed or mitigated in
its earlier stages (e.g., mild cognitive impairment (MCI) and
MCI earlier stage (e.g., significant memory concern, SMC))
by using specific cognitive training and pharmacological treat-
ments [3], [4]. Therefore, it is important to study the diagnosis
of MCI and SMC. The intelligent diagnosis attracts growing
attention and has been shown to perform well in neuroimaging
[5], [6]. However, a few limitations remain, including the
confounding neuroimaging features, multi-center data sources
and limited sample size.

The popularly used neuroimaging modalities for brain dis-
ease intelligent diagnosis include magnetic resonance imaging
(MRI) [7], [8], resting-state functional magnetic resonance
imaging (fMRI) [9]–[11], and diffusion tensor imaging (DTI)
[12], [13]. Nevertheless, most current methods utilize single-
modality imaging data for this study. Their performance is
thus limited for MCI and SMC diagnosis due to confounding
neuroimaging features [14]–[18]. Therefore, multi-modality
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data fusion is studied and validated to effectively construct
a brain connectivity network from multiple disease cues [9],
[12], [13]. In our earlier works [9], [12], [13], we constructed
fMRI and DTI networks, concatenated the dual-modality
features [12] or designed dual-modality classifiers [13] to
boost diagnosis performance by exploring the promising com-
plementarity between functional and structural information.
However, concatenating dual-modality features or developing
dual-modality classifiers increase network parameters, which
results in performance fluctuation in few-shot learning tasks.
In view that the strong structural connectivity among ROIs
typically implies a high opportunity for functional connectiv-
ity [19], [20], we propose to utilize DTI connectivity strength
to assist brain functional network construction by introducing
a sparse regularization term in the sparse representation (SR)
method, which finally forms our fused brain connectivity net-
works. Based on the different distributions of brain connection
strength between different groups on the same pair of brain
regions, Wang et al. [21] proposed distribution-guided network
pruning to determine thresholds for connections in functional
networks. Inspired by it, we further propose a regulatory
factor in sparse regularization term, which is constructed
by computing the distribution diversity of DTI connectivity
strength between groups.

Due to the widely spread of MCI and SMC, neuroimaging
data is usually acquired from multiple medical centers, which
causes diverse imaging conditions [22], [23]. For example,
there are different acquisition protocols in the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) dataset, including
ADNI 1, ADNI 2, ADNI GO, and ADNI 3, where they
also use different equipment types (e.g., SIEMENS, GE,
Philips, etc.) for data collection. Ignoring the above hetero-
geneity probably limits the model’s ability to yield robust and
general representations [24], [25]. Most MCI studies ignore
the heterogeneity, which degrades the diagnosis performance.
Because graph convolutional network (GCN) integrates gender
and equipment type information effectively in diagnosis tasks
[13], [24], [26], we extend this approach to integrate multi-
center information. Besides, current GCN methods treat the
non-image information equally by assigning them the same
amplification coefficients on edge weights, which ignores their
different impacts on features and thus limits performance.
Therefore, we propose an attention mechanism to capture their
different impacts on edge weights.

Although the disease is widely spread, the size of acquired
dual-modality neuroimaging data is usually limited. In view
that the intelligent diagnosis task with a small dataset usually
has a higher request on classifiers, it is essential to study fur-
ther GCN based on the characteristics of MCI and SMC. For
GCN, a graph node is usually represented by the neuroimaging
features of a subject. The edge between nodes is usually
acquired by computing feature similarity where the impact of
phenotypic information is also considered [13], [24]–[27]. The
key to GCN lies in its convolutional filter, where edge weights
correspond to the convolutional coefficients. The existing GCN
methods apply the same convolutional coefficients on all
features for filtering with ignorance of the difference between

Fig. 1. Flowchart of early AD diagnosis.

features, which deteriorates the filter performance. To address
the shortcoming, we propose a multi-channel mechanism
in GCN, which designs different filters for features based
on feature statistics. Applying those nodes with low-quality
features to perform convolution will also deteriorate convolu-
tional performance. The pooling mechanism is thus studied by
reducing the number of those nodes and edges. Most existing
pooling methods are based on top-k selection methods to pool
nodes and edges [10], [28], while others use learned cluster
assignments matrix to generate the pooled graph topology
[29], [30]. These pooling methods utilize trainable or learned
networks to realize pooling, increase network complexity and
result in performance degradation for the task with a small
dataset. To address it, we propose a novel pooling mechanism,
which evaluates nodes and edges by introducing the disease
status of training samples in similarity computing.

The main contributions of this paper are threefold:
1) We introduce a DTI-strength penalty term in the sparse

representation method to fuse fMRI functional information
and DTI structural information for brain connectivity network
construction. DTI structural network and the strength diversity
between subject groups are used to construct the penalty term.

2) We propose a multi-center attention graph in GCN to
consider non-image information (multi-center source, gender,
equipment type, and disease status of those training samples),
and capture their different impacts on edge weights via an
attention mechanism.

3) We propose a multi-channel mechanism in GCN by
designing different filters to improve filter performance.
In addition, we propose a novel pooling mechanism, which
introduces the disease status of those training samples into
the pooling operation to boost performance.

The proposed method is validated using two public datasets
from ADNI and one in-house dataset. Experimental results
indicate that our method achieves remarkable performance for
MCI and SMC diagnosis.

II. BACKGROUND OF GCN

A. Problem Formation

Fig. 1 shows the flowchart of early AD diagnosis. The
diagnosis task is treated as a binary classification task and can
be divided into three parts. Specifically, a fused brain network
for every subject is constructed based on the imaging data.
Then, by extracting the upper triangular matrix elements from
fused brain networks, each subject can be represented by a
high-dimensional feature vector. Feature selection is then used
for feature dimension reduction to fit in the few-shot learning
task. Last, the final diagnosis results are outputted based on
low-dimensional feature vectors and a designed classifier.
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The construction of dual-modality brain networks and
the design of the GCN classifier are the key parts, where
multi-center data sources and phenotypic information are
considered to improve GCN performance.

B. Concept of GCN

GCN was first proposed by Kipf and Welling in 2017 [27]
based on graph neural networks, where spectral graph convolu-
tion theory is introduced to improve filter by applying Fourier
transform and Taylor’s expansion formula.

Supposing N nodes form a graph G = (V, E, A), V is a set
of nodes, E is a set of edges, and A is the adjacency matrix
which is composed by edge weights. The propagation rule of
GCN is denoted as:

Hl+1 = σ
�

ÂHlWl
�

, (1)

where Â = D̃− 1
2 ÃD̃− 1

2 , Hl is the feature matrix of all nodes
in the lth layer, Wl is trainable weight matrix of the lth layer
and σ is an activation function. Ã = A+I, D̃ii = �

j Ãi j .
The graph convolution theory is applied in the construction
of Â. In the process, D̃− 1

2 ÃD̃− 1
2 first converts Ã to the Fourier

domain, then truncates it using Chebyshev polynomials, and
the last converts it to the original time domain.

By using the above propagation rule, the structure of
popular used two-layer GCN for classification tasks is
denoted as:

Z = softmax
�

ÂReLU
�

ÂXW0
�

W1
�

. (2)

C. Filtering Principle in Graph Theory

Compared to traditional two-layer neural networks, pre-
multiplying adjacency matrix Â (shown as ÂX in Eq. (2))
in the GCN layer before propagation plays a role as a filter,
and the filter’s effect is the key to boosting performance.

For the feature vector of subject i , represented by xi , its
filtered form x̂i can be described as Eq. (3).

x̂i =
�N

m=1
Aim × xm . (3)

It shows that existing GCN methods apply the same con-
volutional coefficients (Ai1, Ai2, . . . , Ai N ) on all features (xi)
for filtering, which ignores the difference between features.
To address it, a multi-channel mechanism is proposed in this
paper.

D. Integration of Non-Image Information

Experiments in works [13], [24], [26] show that integrating
non-image information can significantly improve classification
performance. These works integrate information into edges by
assigning edge weights amplification coefficients:

Ai j = sim
�
xi , x j

��H

h=1
r
�

Ph
i , Ph

J

�
, (4)

r
�

Ph
i , Ph

J

�
=

�
1,

		Ph
i − Ph

J

		 < �
0, otherwise,

(5)

where sim(·) is a similarity function between feature vectors,
r represents the measure distance between non-image infor-
mation, Ph

i represents hth non-image information of subject i .
In the above methods, the edge weight between those

subjects with the same non-image information is assigned
as an amplification coefficient. These methods consider age,
gender, and equipment, but they ignore the multi-center and
disease status information in graph learning. Besides, they treat
information equally by assigning them the same amplification
coefficient on edge weights, which ignores their different
impacts. Therefore, we propose a multi-center attention graph
to consider further multi-center source information and disease
status information of those training samples, and capture their
different impacts on edge weights via an attention mechanism.

III. MATERIALS AND METHODS

Fig. 2 shows an overview of the proposed framework,
which is divided into three parts. First, we construct a dual-
modality fused brain connectivity network for each subject,
where the DTI-strength penalty term is introduced in brain
connectivity network construction. Second, we construct a
multi-center attention graph to include node’s feature and con-
nection information, where multi-center source, disease status
information of those training samples, gender and equipment
type information are considered in connection establishment.
Third, a multi-channel pooling GCN is designed and it outputs
the score of each subject.

A. Fused Brain Network Construction

1) Dataset: In this study, three datasets with 459 subjects
are collected, including datasets from ADNI 2, ADNI 3, and
an in-house dataset. Every collected subject in the above three
datasets includes the dual-modality data (fMRI and DTI).
Generally, 163 normal control (NC), 44 SMC, 86 early MCI
(EMCI), and 166 late MCI (LMCI) are included. Demographic
details of the used subjects are shown in Table I.

For fMRI data, the standard preprocessing procedures are
performed using the GRETNA toolbox. 1) The first ten
acquired fMRI volumes are discarded, and then the remaining
170 volumes are corrected by applying mean-subtraction.
2) Head movement correction, spatial normalization with
DARTEL, and smooth filtering by employing the Gaussian
kernel are applied to improve data. 3) The automated anatom-
ical labelling (AAL) is used to segment brain space into
90 regions of interest (ROIs). After the above process,
we obtain the time-series of 90 ROIs for each individual.

For DTI data, PANDA toolbox is used to get the global
brain deterministic fiber bundle. Then, we obtain the fractional
anisotropy (FA) as feature vectors and use the AAL template
on the DTI image to divide the brain space into 90 ROIs. Last,
the average FA of links between network nodes is defined as
the connection weight in the DTI network. After the above
process, we get a 90 × 90 DTI connectivity network for each
individual.

2) Fused Brain Connectivity Network: We use DTI struc-
tural information to restrict the construction of functional
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Fig. 2. Proposed framework for disease diagnosis. (a) Fused brain connectivity network construction. For each subject, its DTI structural network and
the strength diversity between subject groups construct the penalty term C. (b) Multi-center attention graph. For N subjects with each represented by
its fused connectivity network, we construct N feature vectors by selecting their discriminative features. Each feature vector is described as a node on
the graph. We construct edges and compute their weights by considering the multi-center source, disease status of those training samples, gender,
equipment type information, and similarity between feature vectors. (c) Multi-channel pooling GCN. Based on statistics information of features,
we further divide the multi-center attention graph into several subgraphs and use a pooling mechanism to process them, then input every pooled
subgraph into its corresponding single-layer GCN, then concatenate outputted features and input them into the second-layer GCN to get the final
classification results.

TABLE I
DEMOGRAPHIC CHARACTERISTICS OF THE USED SUBJECTS

connectivity networks. Then the restricted functional connec-
tivity networks are treated as fused connectivity networks.
Traditional SR-based methods generate the brain functional
connectivity network W by adding a l1-norm or l2-norm
regularization to control network sparsity. Inspired by the
works in [10], [15], which weighted the sparse regularization
by using functional connectivity strength, we introduce a DTI-
strength penalty term in the SR method to improve its sparse
regularization using:

min
W

1

2
�Y − YW�2

F + λ�C � W�1, (6)

where Y∈ R
180×90 is the fMRI data matrix, and W∈ R

90×90 is
the constructed brain connectivity network. C ∈ R

90×90 is the
constructed structural connectivity penalty matrix. � denotes
the element-wise product, σ is a positive parameter, and λ is
a parameter to control sparsity.

Constructing C is the key to boosting performance. We con-
sider the structural connectivity network and connectivity
strength diversity between subject groups. Given T training
subjects and their corresponding disease statuses, we divide
all training subjects into two groups based on their labels.
Here, we also consider the diversity between multi-center
datasets. Then the two groups with DTI connectivity strength
information are denoted as SC+= [SC1+, SC2+, . . . , SCT1+]
and SC−= [SC1−, SC2−, . . . , SCT2−], respectively. Here T1

and T2 are the number of subjects in two groups (T1+T2 = T ).
Therefore, the strength diversity matrix SC# is defined as:

SC# = |
1
T1

�T1
i=1 Sci+ − 1

T2

�T2
j=1 sc j−

1
T1

�T1
i=1 sci+ + 1

T2

�T2
j=1 sc j− | (7)

where SC#∈R
90×90 represents DTI strength diversity between

two groups, SC ∈ R
90×90 represents DTI connectivity net-

work, SCi+ and SC j− represent the DTI connection strength
matrices of subjects i and j , where subjects i and j come
from different groups.

For every subject, by considering its structural connectivity
matrix SC and its corresponding strength diversity matrix SC#,
the structural connectivity penalty matrix C is defined and its
element Ci j is denoted as:

Ci j = exp


−sc2
i j

σ1

�
×



1 + exp


−SC#
i j

σ2

��
(8)

where σ1 and σ2 are set as the mean value of the standard
variation of all subjects’ structural connectivity matrix SC and
strength diversity matrix SC#.

B. Multi-Center Attention Graph
A multi-center attention graph is proposed in this subsec-

tion. Edge connections between each pair of nodes retain more
useful information. Edge weights are adaptively computed
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by considering feature similarity and pieces of non-image
information (medical center, disease status, gender, equipment
type). The attention mechanism considers different impacts
of every piece of information, and assigns different amplifi-
cation coefficients on edge weights. Compared to our earlier
work [13], more edges are retained and different impacts of
non-image information are considered.

Supposing there are N subjects with feature matrix
X ∈ R

N×M representing their features. Adjacency matrix
A∈ R

N×N includes all edge weights, and its element Ai j

represents the edge weight between subjects i and j , sim(·)
is the feature similarity function, rg represents the gender
distance, re represents the equipment type distance, rc rep-
resents the medical center (source) distance, and rs represents
the disease status distance. For subject i , we define xi , gi ,
ei , ci , and si to represent feature vector, gender, equipment
type, medical center, and disease status, respectively. The
corresponding edge weight on the multi-center attention graph
is calculated as:

Ai j = sim
�
xi , x j

� × �
a0 + ag × rg

�
gi , g j

�
+ ae × r e

�
ei , e j

� + ac × rc
�
ci , c j

�
+ as × r s

�
si , s j

��
,

s.t . a0 + ag + ae + ac + as= 1,

a0, ag, ae, ac, as ∈ (0, 1). (9)

where similarity function is defined as:

sim
�
xi , x j

� = ex p



−

�
ρ

�
xi , x j

�
2

2σ 2

�
, (10)

where ρ(·) is the correlation distance function and σ is the
width of the kernel. rg, re, rc, and rs are defined as:

rg
�
gi , g j

� =
�

1, gi = g j

0, gi �= g j ,

re
�
ei , e j

� =
�

1, ei = e j

0, ei �= e j ,

rc
�
ci , c j

� =
�

1, ci = c j

0, ci �= c j ,
(11)

rs
�
si , s j

� =
⎧⎨
⎩

1, si = s j (training data)
0, si �= s j (training data)
0, si or s j i s unkown (test data).

The amplification coefficients a0, ag , ae, ac, and as are
acquired from the network training. Specifically, we realize
our attention mechanism as follows. First, we construct a
similarity matrix Sim ∈ R

N×N , identity matrix I ∈ R
N×N ,

gender distance matrix Ag ∈ R
N×N , equipment distance

matrix Ae ∈ R
N×N , center distance matrix Ac ∈ R

N×N , and
status distance matrix As ∈ R

N×N according to Eqs. (10)
and (11). Then Eq. (9) can also be described as: A = Sim �
(a0×I+ag×Ag+ae×Ae+ac×Ac+as×As), as shown in Fig. 3.
Second, the above five matrices (i.e., I,Ag, Ae, Ac, andAs) are
combined by using Conv2d (5, 1, 1, 1) in python, and the five
attention coefficients (i.e., a0, ag , ae, ac, and as) correspond
to the convolution coefficients in Conv2d function. Moreover,
attention coefficients (i.e.,a0, ag , ae, ac, and as) subject to
conditions (ranging from 0 to 1 and summed up to 1).

Fig. 3. Construction of adjacency matrix in multi-center attention graph.

Fig. 4. Overview of the proposed multi-channel mechanism.

C. Multi-Channel Pooling GCN

We propose a multi-channel mechanism to improve filter
by assigning different filters to features based on their charac-
teristics. We propose a pooling mechanism to pool edges by
introducing the disease status of training samples.

1) Multi-Channel Mechanism: The procedure of the pro-
posed multi-channel mechanism is described as follows. First,
we rank the extracted features based on their statistics. Second,
we split ranked features into several parts, and then design
several adjacency matrices as filters. We can get several sub-
graphs by combing the split features and their corresponding
adjacency matrices. Third, we get a feature matrix for every
subgraph by inputting subgraphs into their corresponding
GCN. Then we concatenate them in one feature matrix, and
combine it with the initial adjacency matrix to form a graph.
Last, we feed the graph into the second-layer GCN, and
then output the final classification results. The multi-channel
mechanism is shown in Fig. 4.

Inspired by the work [31] that utilized the feature mean
value and feature standard deviation for feature selection,
we propose our feature ranking method and its evaluation
criteria are denoted as:��Mean

�
X+� − Mean

�
X−���

Std
�
X+� + Std

�
X−� , (12)

where supposing there are total N subjects on graph with T
samples in the training set and each subject has M features.
Here T1 and T2 are the number of subjects in two groups
(T1 + T2 = T ). X+ ∈ R

T1×M and X− ∈ R
T2×M rep-

resent the feature matrices of samples in the two groups.
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Fig. 5. Overview of the proposed pooling mechanism. All samples are
included on the graph, and those training samples are divided into two
groups according to their labels (denoted as Class1 and Class2). The test
samples with unknown labels are the target of the classification task.

Mean (·) represents the mean value function. Std (·) repre-
sents the standard deviation function.

After ranking features based on the criterion as Eq. (12),
we divide the feature matrix X ∈ R

N×M into W parts
(Xi ∈ R

N×(M/W )), as X = [X1,X2, · · ·XW ], where X1 rep-
resents those high-ranking features and XW represents those
low-ranking features. Based on feature matrix X and non-
image information, we compute the initial adjacency matrix
A0 ∈ R

N×N according to Eqs.(9)-(11). Similarly, we compute
the multi-channel adjacency matrices A1, A2, · · ·AW by using
feature matrices X1,X2, · · ·XW and non-image information,
respectively. Finally, multi-channel subgraphs are formed,
which are represented by A1X1

1, A2X1
2, · · ·AW X1

W . X1
i rep-

resents the feature matrix Xi in the first GCN layer, and
X2

i represents the feature matrix Xi in the second GCN layer.
To enhance robustness, we use an initial adjacency matrix A0
to multiply the multi-channel adjacency matrix in Eq. (13). �
represents Hadamard product.

Ai = A0 � Ai . (13)

2) Pooling Mechanism: Supposing there are total of N
subjects on a graph with T1 training samples in Class1 group
and T2 training samples in Class2 group. First, we establish
a similarity matrix S1 ∈ R

N×T1 to evaluate the similarity
between every sample and those Class1 samples, and establish
a similarity matrix S2 ∈ R

N×T2 to evaluate the similarity
between every sample and those Class2 samples. Second,
we evaluate the difference between similarity matrices S1 and
S2 as Eq. (14), denoted as d ∈ R

N×1. Third, we select those
nodes with high scores based on the top-k selection method
and record their indices. Last, we use the indices to form a new
graph by establishing a new adjacency matrix Ā and keeping
feature map invariant as X̄ = X, where Ā and X̄ are pooled
A and X. Our pooling mechanism is shown in Fig. 5.

d = �Mean (S1) − Mean (S2)� . (14)

IV. EXPERIMENTS AND RESULTS

We divide this section into three parts to evaluate the effec-
tiveness of our methods, including performance evaluation of

dual-modality fused brain connectivity network, performance
evaluation of the proposed methods for improving GCN clas-
sifier, and performance comparison of our method with the
other related methods. Based on the 10-fold cross-validation
strategy, prediction accuracy (ACC), sensitivity (SEN), speci-
ficity (SPE) and area under the curve (AUC) are used as
evaluation criteria. The GCN parameters of all strategies in this
paper are fixed and chosen according to previous work [24].
Parameter details are set as below: dropout rate is set as 0.1,
regularization rate is set as 5 × 10−4, the learning rate is set
as 0.005, the number of epochs is set as 200, the default
polynomial order is set as 3, the number of neurons per layer
is set as 32, and the number of selected features by using RFE
is set as 200.

A. Performance of Fused Brain Connectivity Network

The SR method uses fMRI signals to construct a func-
tional connectivity network, and we introduce the DTI-strength
penalty term to induce its sparse regularization. Here, we eval-
uate the effectiveness of our fusion method by comparing it
with the other three fusion methods (shown in Fig. 6), and the
comparison results are summarized in Table II. In Table II,
the classification results based on single-modality data are
also provided. All comparison experiments in this subsection
adopt our multi-center and multi-channel pooling GCN as the
classifier.

Based on fMRI data, the mean ACC of all six binary
classification tasks is 83.9%, whereas the mean ACC is 82.8%
by using DTI data. Compared to DTI data, using fMRI
data for classification shows a 1.1% ACC improvement. This
result conflicts with our earlier work [13], where DTI data
shows a better performance with ACC improved by 5.5%.
The inconsistency is caused by the difference between multi-
center data sources, where the data used in this paper comes
from three datasets (including ADNI 2, ADNI 3, and in-house)
while the data in work [13] comes from one dataset (ADNI 3).

To evaluate the effectiveness of our dual-modality fusion
method, we compare it with three popular fusion methods
[12], [13]. The mean ACC of our method is 93.1%, whereas
the mean ACC of the other three fusion methods is 86.8%,
86.4% and 87.9%. This result shows that our method achieves
at least 5.1% performance improvement. Compared to the
performance of using single-modality data, it shows 9.1% and
10.3% improvements, respectively. SEN, SPE and AUC reach
to 91.1%, 88.8%, and 96.4%, respectively. Comparison results
show our method can achieve the best performance.

B. Performance of Multi-Center and Multi-Channel
Pooling GCN

We propose three mechanisms to improve the current GCN
classifiers: a multi-center attention graph, a multi-channel
mechanism, and a novel pooling mechanism. To describe
our method, we use M-GCN to represent the traditional
GCN with our multi-center attention graph, MM-GCN to
represent the traditional GCN with our multi-center attention
graph and multi-channel mechanism, MMP-GCN to repre-
sent the traditional GCN with our above three mechanisms.
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Fig. 6. Overview of the three popular used dual-modality fusion methods for comparison. Fusion method 1: After selecting features from functional
and structural networks, it concatenates functional features and structural features as one feature vector for every subject. It constructs a graph
and uses a two-layer GCN for final classification. Fusion method 2: After selecting features from functional and structural networks, it constructs a
functional graph and a structural graph, and then uses two GCN frameworks for classification. The dual-modal classification results are combined
based on the weighted summation. Fusion method 3: After constructing a functional graph and a structural graph, it uses a single-layer GCN to
learn deep features for every modality. It concatenates deep functional and deep structural features as one feature vector for every subject. By using
another single-layer GCN, it outputs final classification results.

TABLE II
CLASSIFICATION PERFORMANCE OF DIFFERENT MODALITIES AND FUSION METHODS

Other nine related popular frameworks are also implemented
on our dataset, including multiple layer perception (MLP),
support vector machine (SVM), GCN [24], HGNN [38], Graph
U-Net [28], Graphsage [39], GAT [40], AGNN [41], and
AM-GCN [42]. All experiments are based on the constructed
dual-modality fused brain connectivity network. Experimental
results are given in Table III. GCN parameters are set as
above, MLP parameters follow the GCN implementation.
SVM is based on the Scikit-learn library. For GCN vari-
ants (HGNN, Graph U-Net, Graphsage, GAT, AGNN, and
AM-GCN), we get their results based on the implementations
released by the corresponding source code. Their fundamental
parameters (e.g., dropout rate, regularization, learning rate,
number of epochs, and number of neurons per layer) are the
same with GCN.

Table III shows that the traditional classifiers’ performance
(MLP and SVM) is poor, where the mean ACC of six tasks
based on MLP and SVM are 76.6% and 75.4%, respectively.
Compared with the two traditional methods, GCN achieves
better performance with ACC increased by 9.7%. This result
follows the previous work [24], which also validates the effec-
tiveness of GCN. The proposed multi-center attention graph
considers the multi-center source, disease status information
of those training samples, gender, and equipment type. Also,
it uses an attention mechanism to assign them appropriate
amplification factors adaptively. By comparing M-GCN with
GCN, Table III shows the mean ACC, SEN, and SPE of the
six tasks increase by 2.1%, 3.8%, and 3.4%, respectively.
These results indicate that our multi-center attention graph
is effective. Based on the statistical information of features,
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TABLE III
CLASSIFICATION PERFORMANCE COMPARISON OF DIFFERENT CLASSIFIERS

we divide features into several parts and then design differ-
ent filters for filtering. Using the multi-channel mechanism,
experimental results show the mean ACC and SEN increase
by 2.0% and 2.4%, respectively, whereas SPE decreases by
1.2%. To improve pooling operation, we introduce the disease
status of training samples into it. By comparing MMP-GCN
with MM-GCN, experimental results show an increase by
2.5%, 3.1%, and 4.9% in the mean ACC, SEN, SPE, respec-
tively. The above results validate the effectiveness of our
three mechanisms on GCN. Finally, using GCN with our
three mechanisms, the mean ACC, SEN, and SPE of six
tasks increase by 6.6%, 9.4%, and 7.1%, respectively. In our
six classification tasks, the performance of SMC vs. LMCI
reports the highest improvement (ACC increases by 7.1%).
In contrast, NC vs. EMCI gets the lowest improvement (ACC
increases by 5.6%). Finally, the mean ACC of six tasks
reaches 93.1%.

For those popular GCN variants (HGNN, Graph U-Net,
Graphsage, GAT, AGNN, and AM-GCN), the classifica-
tion accuracy has big differences. For example, AGNN and
AM-GCN show good performance, with the mean ACC of
six tasks reaching 86.7%, whereas HGNN and GAT show
bad performance, with the mean ACC of six tasks reaching
76.3% and 79.5%. GAT utilizes trainable or learned networks
to construct an adjacency matrix, which increases network
complexity and results in performance degradation for our task
with a small dataset. Our method has a simpler structure with
fewer parameters than these methods. More details and com-
parisons of the above variants are provided in the discussion
section.

C. Comparison With Related Works
Table IV compares the final classification performance

between the proposed method and related ones. Related works
mainly focus on the study of brain network construction and
classifier. Brain network construction methods include hyper-
network, dynamic effective connectivity network, low-rank
self-calibrated brain network, PCC method, fused multiple
graphical Lasso method, WGraphSR method, etc. These tra-
ditional methods try to describe brain networks from different
aspects. Although they have achieved good performance, the
ACC is still limited by insignificant features of MCI. Table IV
shows their ACC ranges from 72.8% to 90.9%. Various multi-
modality data fusion methods are widely studied (e.g., fusion
fMRI and ASL-fMRI data, fusion fMRI and DTI data). Their
experimental results show that the classification performance
based on fused data is better. Unlike traditional brain network
construction methods above, we introduce a DTI-strength
penalty term in the sparse representation to get the dual-
modality fused brain connectivity network.

Compared to the traditional classifiers (e.g., SVM and
MLP), deep learning (e.g., GCN) shows better performance.
Table IV shows that the mean ACC based on GCN can
reach 86.8% in our earlier work [13], whereas the traditional
classifiers reach 74.3%. This result shows that the filter effect
of GCN can significantly improve classification performance.
Based on the advantage of GCN, we propose three mecha-
nisms and name the novel method as MMP-GCN. Table IV
shows that our method can achieve the best performance.

Unlike current works, our work also studies the heterogene-
ity between different datasets, where we combine the data from
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TABLE IV
ALGORITHM COMPARISON WITH RELATED WORKS

ADNI 2, ADNI 3 and in-house. Compared to the current GCNs
that set the impacts of non-image information as constants to
amplify edge weights, we adopt an attention mechanism to
combine non-image information. The impacts of the above
information on edge weights are learned by network training.
Compared to other works that mainly study the classification
task of MCI vs. NC, we study more tasks. Specifically, NC
vs. SMC, NC vs. EMCI, NC vs. LMCI, SMC vs. EMCI,
SMC vs. LMCI, and EMCI vs. LMCI are included. Besides,
compared to the limited samples in related works (ranging
from 59 to 370), our work has more samples (457).

Our earlier work [12] concatenated fMRI functional features
and DTI structural features. We adopted multi-task learning
for feature selection, and finally used SVM to get the final
classification results. In [13], we designed a dual-modality
GCN (combining fMRI and DTI data) for classification. In this
work, a structural connectivity penalty term is proposed in con-
structing functional connectivity networks and then using the
fused network (i.e., functional connectivity network) to realize
classification. Compared to the related works, our MMP-GCN
achieves state-of-art performance. Compared to dual-modality
GCN framework, it has more stable discriminative features
and a simpler classifier structure. Moreover, the multi-center
information, the difference between features, and the pooling
effect are further considered.

Fig. 7. Effect of the regularized parameter λ on ACC of six tasks.

V. DISCUSSION

A. Analysis of Regularized Parameter

There is only one regularized parameter, named λ, in con-
structing our fused brain connectivity network to control the
network sparsity. To study its effect on classification perfor-
mance, we implement an experiment with λ varying from
2−10 to 20 based on our MMP-GCN classifier. The experi-
mental results are shown in Fig. 7.

The ACC varies by setting different λ values, and the
highest ACC is usually acquired with λ set as 2−6 - 2−4.
Specifically, SMC vs. EMCI and SMC vs. LMCI get their
highest ACC with λ set as 2−4, NC vs. SMC, NC vs. EMCI,
and NC vs. LMCI get their highest ACC with λ set as 2−5,
EMCI vs. LMCI gets its highest ACC with λ set as 2−6.
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Fig. 8. Effect of non-image information on ACC of six tasks.

TABLE V
ATTENTION COEFFICIENTS IN DIFFERENT TASKS

Generally, the mean ACC reaches the highest value with λ set
as 2−5. The parameter λ can result in a mean 6.2% fluctuation
on ACC, which indicates that our proposed method plays
an important role in brain connectivity network construction.
Compared to other brain network construction methods, our
method has a simple structure.

B. Analysis of Non-Image Information

In earlier GCN studies, non-image information is an impor-
tant factor to affect classification performance, where the
edge weight between the nodes with the same information is
assigned a large value. For example, the experimental results in
work [24] showed that considering the gender and equipment
type in GCN can cause 3% ACC improvement for AD and
ASD prediction. The results in work [13] indicated that they
can cause a mean 7.1% improvement on ACC for SMC
and MCI prediction. Besides, different data sources (multi-
center studies) also affect the performance of ASD prediction
[43], [44]. In this subsection, we evaluate the effect of non-
image information on ACC. Their effect is shown in Fig. 8
and attention coefficients in experiments (i.e., a0, ag , ae, ac,
and as in Eq. (9)) are listed in Table V.

For our six classification tasks, experimental results show
that integrating single information (gender, equipment type,
multi-center information, and disease status information) can
achieve mean ACC of 84.2%, 84.9%, 83.8%, and 88.2%,
respectively. It indicates that disease status information has
much more influence on performance improvement. By inte-
grating all the above information, experimental results show
that the mean ACC can reach 93.1%. Table V shows we can
get different attention coefficients in the training process and
there is a little difference between different tasks. The above

Fig. 9. Effect of the number of channels on ACC of six tasks.

experimental results indicate that the above non-image infor-
mation are important factors affecting classification perfor-
mance, and integrating them all on a graph can achieve the
best performance.

C. Analysis of the Number of Channels

As illustrated in our earlier work [13], the selected features
have different noise characteristics. This study presents a
multi-channel mechanism to improve the filtering process,
which splits the selected features into multiple parts based
on their statistics and then designs the corresponding filters
to adapt to their characteristics. We evaluate the effect of the
number of channels on the performance, and the experimental
results are shown in Fig. 9.

The highest ACC is usually achieved with the number of
channels set as 4 or 5. For example, NC vs. SMC, NC vs.
EMCI and SMC vs. LMCI get their highest ACC with the
number set as 4. NC vs. LMCI, SMC vs. EMCI and EMCI
vs. LMCI get their highest ACC with the number set as 5.
The mean ACC of the six tasks gets the highest value with
the number set as 5. Setting the number of channels from 1 to 9
shows a mean 4.5% ACC change between the best and worst
performance in the six tasks. The above results validate the
effectiveness of our multi-channel mechanism and indicate that
considering the difference between features in the filter plays
an important role in performance improvement. The number
of trainable parameters is also an important factor, which is
used to evaluate the network complexity. Supposing that there
are N subjects with each having M features and Q1 neurons
per layer. Hence, the total parameters’ number in a traditional
single-layer GCN is M×Q1. In contrast, the total parameters’
number in a single-layer multi-channel GCN (Q2 channels)
is ((M/Q2)×Q1)×Q2= M×Q1. This show no increase in
the number of total parameters by using our multi-channel
mechanism.

D. Analysis of Pooling Strategy

We propose a simple and untrained selection method for
edge pooling to reduce the number of edges on the graph to
boost filter robustness. Based on the proposed MMP-GCN,
we adjust the number of retained edges by pooling 0-30% of
them to test its effect, and the effect on performance is shown
in Fig. 10.

Experimental results report that the best pooling perfor-
mance is usually obtained while setting the pooling rate as
10% or 15%. Specifically, NC vs. EMCI and SMC vs. EMCI
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Fig. 10. Effect of the pooling rate on ACC of six tasks.

TABLE VI
TOP 10 MOST DISCRIMINATI

get their highest ACC by setting the pooling rate as 10%.
NC vs. SMC, NC vs. EMCI, NC vs. LMCI and SMC vs.
LMCI get their highest ACC with setting the pooling rate
as 15%. The mean ACC of six tasks gets the highest value
with setting the pooling rate as 15%. Using our pooling
mechanism by setting the best pooling rate, the mean ACC gets
up to 2.3% improvement, validating our pooling mechanism’s
effectiveness.

E. Most Discriminative Connectivity Features and
Related ROIs

When constructing the dual-modality brain connectivity
network, well-known and highly-correlated ROIs in AD/MCI
disease are used [45]–[48]. For example, the inferior tempo-
ral gyrus (ITG.R), insula (INS.R), olfactory cortex (OLF.L),
angular gyrus (ANG.L), amygdala (AMYG.R) and pre-
cuneus (PCUN.R). Specifically, the ITG.R shows the most
important region in our tasks related to advanced cognitive
functions [45]. Table VI lists the top 10 most related ROIs for
our six classification tasks.

Based on fMRI or DTI data, the top 10 related ROIs
are partly related to early AD. Whereas most of the top
10 related ROIs extracted from our dual-modality fused con-
nectivity network are associated with early AD [46]–[50].
Specifically, the hippocampus (HIP.L), the extracted putamen
lentiform (PUT.L), amygdala (AMYG.L) and middle occipital
gyrus (MOG.R) in the top 10 ROIs based on fMRI data are
related to early AD disease. The extracted INS.R, posterior
central gyrus (PoCG.R), PCUN.R and supplementary motor
area (SMA.R) in the top 10 ROIs based on DTI data are

TABLE VII
CROSS-VALIDATION RESULTS

associated with early AD disease. The above results indicate
that the proposed dual-modality fused brain network construc-
tion method is more efficient in finding discriminative features.
For different classification tasks, we show the top 20 most
discriminative connectivity features and the top 10 ROIs in
Fig. 11. It shows there exist differences among different
classification tasks.

F. Cross-Validation on Three Datasets

To further verify the robustness of our model, we perform
cross-validation on our three datasets. The used data in this
subsection includes 163 NC and 166 LMCI. Specifically,
29 NC and 27 LMCI in ADNI 2, 64 NC and 40 LMCI
in ADNI 3, 70 NC and 99 LMCI in in-house dataset.
Three experiments are performed and their results are shown
in Table VII.

As Table VII shows, there are different classification per-
formances by setting distinct datasets for training and test.
Specifically, based on our brain network construction method
and MMP-GCN classifier, the ACC in the three tasks are
74.5%, 74.5% and 78.2%, respectively. Compared to the mean
ACC limited to 64.4%, 66.6%, and 69.3% for MLP, SVM, and
GCN, our method performs best performance with a mean
ACC of 75.7%. The above results verify the effectiveness of
our method in the cross-validation task.

G. GCN Related Works

Many works are devoted to improving GCN. The popular
GCN variants include HGNN [38], Graph U-Net [28], Graph-
sage [39], GAT [40], and AGNN [41]. We compare them and
show their differences in this subsection.

AGNN is a simple GCN variant, which mainly updates
the adjacency matrix in every propagation layer by com-
puting feature similarity. Updating the adjacency matrix in
propagation increases the difficulty of network training and
results in performance fluctuation. HGNN designs a hyper-
edge convolution operation for learning the hidden layer
representation by considering the high-order data structure.
Compared to the GCN that establishes pairwise connections,
a hypergraph can encode high-order data correlation using
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Fig. 11. Top 10 most discriminative ROIs and top 20 most discriminative connectivity features in our dual-modality fused brain connectivity network.

degree-free hyperedges. HGNN has a simple structure with-
out increasing network parameters. Graph U-Net proposes
graph pooling (gPool) and unpooling (gUnpool) operations.
The gPool layer adaptively selects some nodes to form a
smaller graph based on their scalar projection values on a
trainable projection vector. The gUnpool layer (the inverse
operation of the gPool layer) restores the graph into the orig-
inal structure. Graphsage trains a set of aggregator functions
that aggregates feature information from a node’s local neigh-
borhood. The aggregator function is trainable and maintains
high representational capacity. The aggregator function and
concatenation operation increase the total number of parame-
ters. GAT uses learnable linear transformation (i.e., a trainable
weight matrix) and a single-layer feedforward neural network
(i.e., a trainable weight vector) to construct an adjacency
matrix, which significantly increases the network complex-
ity. Similar to GAT, self-attention and Transformer also use
learnable linear transformation (i.e., three trainable weight
matrices) to realize filtering, increasing network complexity
significantly. Compared to the above GCN-related methods,
our attention mechanism with only five trainable parameters
(i.e., a0, ag, ae, ac, as) and our pooling mechanism without

trainable parameters is very simple, and therefore fits in the
few-shot learning task.

H. Limitations and Future Work

Still several limitations need to be considered. 1) The
effect of multi-center and phenotypic information on features
can be further evaluated and considered in GCN. 2) The
proposed multi-channel mechanism increases the complexity
of the GCN classifier to some extent. 3) The proposed dual-
modality fusion method ignores the condition of incomplete
multi-modality neuroimages. We will further improve the GCN
classifier and solve the limitation of incomplete multi-modality
neuroimages in our future work.

VI. CONCLUSION

We propose to use structural connectivity strength to con-
struct the functional connectivity network, which realizes
the fusion of dual-modality imaging data (fMRI and DTI).
Its better performance than the other popular fusion methods
indicates that stronger structural connectivity among ROIs
implies better discriminative functional connectivity feature in
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MCI and SMC classification tasks. By analyzing the effect of
multi-center, disease status, gender, and equipment type infor-
mation on classification performance, we find that the above
information has different impacts on performance. Considering
disease status information of those training samples in graph
construction shows the most obvious performance improve-
ment. The effect of multi-center information validates the
feature heterogeneity among imaging data acquired from dif-
ferent medical centers. Our attention mechanism is proposed
to combine the above information into graph construction
by considering their different impacts, which shows good
performance. This result also verifies the efficiency of the
graph theory. By analyzing the effect of the number of
channels, we observe that designing multiple filters to consider
feature differences is effective. By analyzing the pooling rate
in our pooling mechanism, we find it could obtain up to 2.3%
improvement on ACC. This result validates that including
those nodes with low-quality features to perform convolution
will degrade the filter performance. Generally, the proposed
MMP-GCN method mainly improves the filter performance,
resulting in our good classification performance. The proposed
method can be also applied to other classification tasks.
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